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Weak selection and stability of localized distributions in Ostwald ripening
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~Received 16 January 1998; revised manuscript received 3 June 1998!

We support and generalize a weak selection rule predicted recently for the self-similar asymptotics of the
distribution function~DF! in the zero-volume-fraction limit of Ostwald ripening~OR!. An asymptotic pertur-
bation theory is developed that, when combined with an exact invariance property of the system, yields the
selection rule in terms of the initial condition, predicts a power-law convergence towards the selected self-
similar DF, and agrees well with our numerical simulations for the interface- and diffusion-controlled OR.
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PACS number~s!: 05.70.Fh, 64.60.2i, 47.54.1r
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In a late stage of a first-order phase transition a two-ph
mixture undergoes coarsening, or Ostwald ripening~OR!,
when the minority phase tends to minimize its interfac
energy under the condition of a constant volume@1–3#. De-
spite numerous works, OR continues to attract attention b
in experiment@4# and in theory@5,6#. Our main motivation in
studying this problem has been an attempt to resolve an
selection problem~described below! that created much con
troversy.

The ‘‘classical’’ formulation of the problem of OR, valid
in the limit of a negligibly small volume fraction of the mi
nority domains, is due to Lifshitz and Slyozov~LS! @1,2# and
Wagner@3#. In this formulation, the dynamics of the distr
bution function~DF! F(R,t) of the domain sizes is governe
~in scaled variables! by the continuity equation

]F

]t
1

]

]R
~VF!50, V~R,t !5

1

Rn S 1

Rc
2

1

RD , ~1!

whereRc(t) is the critical radius for expansion or shrinkag
of an individual drop, whilen is determined by the mas
transfer mechanism. The dynamics are constrained by
servation of the total volume of the minority domains

E
0

`

R3F~R,t !dR5Q5const. ~2!

Of great interest are possible self-similar intermedi
asymptotics of this problem and the rule that selects the
evant asymptotics out of many possibilities. Scaling analy
of Eqs. ~1! and ~2! yields a similarity ansatzF(R,t)
5t2mF(Rt2n) and Rc5(t/s)n, where m54/(n12), n
51/(n12), and s5const. Upon substitution, one finds
family of self-similar DFs for everyn>21, where each of
the DFs is localized on a finite interval@0,um# of the simi-
larity variableu5Rt2n. The DFs can be parametrized bys
and the interval of possible values ofs is determined by the
requirements of the continuity ofF(R,t) on the whole inter-
val @0,um# and normalizability with respect to Eq.~2!. For
each of the solutions, the average domain radius grow
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time like t1/(n12) and the number of domains decreases l
t23/(n12), but the coefficients in these scaling laws ares
dependent.

The self-similarity and related scalings were discove
by LS @1,2# in the case ofn51 ~diffusion-controlled OR!.
LS arrived at auniqueself-similar DF ~we will call it the
limiting solution! and ruled out other possible solutions.
the first paper@1#, the other solutions were rejected as no
normalizable with respect to Eq.~2!. In the case ofn50
~interface-controlled OR! this argument was repeated b
Wagner@3#. However, already in their second paper@2# on
the same subject LS realized that no problem with norm
ization arises for initially localized DFs~that is, for those
with a compact support att50). This correction was appar
ently overlooked in the literature~e.g., Ref.@7#! until Brown
@8# addressed the other solutions and found them numeric
for n51. This created a long-standing controversy~see, e.g.,
@9#! and the first step towards resolving it was made in
case ofn50 @6#. It was noted that a DF, initially localized
on an interval@0,Rm(t50)#, always remains localized on
~time-dependent! interval @0,Rm(t)#. Furthermore, ifF(R,t
50) is describable by a power lawA0@Rm(t50)2R#l in
the close vicinity ofR5Rm(t50), then for anyt.0 the
leading term in the expansion ofF(R,t) in the vicinity of
R5Rm(t) has the formA(t)@Rm(t)2R#l. Invariance of the
exponentl under the dynamics~1! and ~2! implies a selec-
tion rule @10# for the ‘‘correct’’ self-similar DF, as there is a
one-to-one correspondence between 0,l,1` and the pa-
rameters @6#. @The limiting solution corresponds to an ex
tended ~noncompact! initial condition or, formally, to l
→1`.] More precisely, if a self-similar asymptotics is ev
reached, it must be the one selected byl. However, no at-
tempts have been made to solve~even numerically! the full
time-dependent problem with a localized initial DF. Furthe
more, no stability or convergence analysis for the localiz
DFs has been performed, so the selection rule propose
@6# has remained unconfirmed.

This paper supports the selection rule along three dir
tions. The first one is to generalize the selection rule for a
n>21. The second is to prove the stability of and analy
the convergence towards the selected self-similar DF.
third is to verify our theoretical predictions numerically.

A meaningful formulation of the stability problem re
quires some care. Indeed, each member of the family of s

l
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similar solutions for the DF, except the limiting solution,
formally unstable with respect to addition of an~infinite! tail.
In this case it is the limiting solution that will finally develo
@1,2,9#. However, such a perturbation is not always possib
In addition, the results of@6# imply that each member of th
family, except the limiting solution, is formally unstable wit
respect to alocalizedperturbation that either has a largerRm
than the ‘‘unperturbed’’ DF or the sameRm and a smaller
exponentl. In each of these cases another self-similar so
tion from the same family finally develops~as we see in our
numerical simulations! and this situation can hardly be re
garded as instability. A meaningful formulation of the stab
ity problem should therefore deal with initial perturbatio
localized on the same interval ofR as the unperturbed DF
and characterized by the same exponent in the close vic
of Rm(t50).

We will develop an asymptotic linear theory that, com
bined with an~exact! invariance property of the model, wil
enable us to prove, analytically, the stability of each of
self-similar DFs. This result and our numerical simulatio
will confirm the weak selection rule@6#. We will analyze the
late-time convergence of an initially localized DF towar
the selected self-similar DF and find apower-lawdecay in
time for the corresponding~non-self-similar! perturbation.
This decay is much faster than the logarithmic decay fou
for the limiting solution@1,2#. We will see that not only the
selected self-similar DF, but also the decay exponent is
termined solely by the analytical properties ofF(R,t50) in
the close vicinity ofRm(t50). Our theoretical predictions
show very good agreement with simulations.

We will start with the asymptotic theory. Solving th
problem analytically is made possible by a change of v
ables that employs the compactness of the support@0,Rm(t)#
of the DF. Introduce a scaled drop radius and a new tim

x~R,t !5
R

Rm~ t !
, t5E

0

t dt8

Rm
n12~ t8!

, ~3!

and a scaled DF

G~x,t!5Rm
4
„t~t!…F„R~x,t!,t~t!…. ~4!

In the new variables Eqs.~1! and ~2! can be rewritten as

~]G/]t!1@v~x2n2x!1x2x2n21#~]G/]x!

1@~n11!x2n222nvx2n2124~v21!#G50 ~5!

and *0
1G(x,t)x3dx5Q, respectively, where v(t)

5Rm„t(t)…/Rc„t(t)…. The functionG(x,t) is nonzero on the
interval 0,x,1 and zero elsewhere.

We will see in a moment that a self-similar solution f
F(R,t) corresponds to asteady-statesolution for G(x,t).
Therefore, we are looking for the solution in the form

G~x,t!5F0~x!1F1~x!eqt1••• ,
~6!

v~t!5v01v1eqt1••• ,

whereq is a ~sought for! complex number. BothF0(x) and
F1(x) are localized on the interval@0,1#. The perturbation
must not change the normalization condition~2! and the as-
.
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ymptotics of the unperturbed solution near the pointx51,
that is,*0

1x3F1(x)dx50 andF15O(F0) at x→1.
A family of steady-state solutionsF0(x) ~parametrized

by v0) is obtained from the zeroth-order equation

@v0~x2n2x!1x2x2n21#~dF0 /dx!

1@~n11!x2n222nv0x2n2124~v021!#F050. ~7!

Integration of this equation in elementary functions is po
sible for n521,0,1, and 2~that is, for most cases of phys
cal interest@11#!. For example, forn50 one has

F0~x!5CQx~12x!a~x22x!n, 0<x<1, ~8!

where

a5
4v025

22v0
, n5

v025

22v0
, x25

1

v021
, ~9!

while CQ is determined from the condition*0
1x3F0(x)dx

5Q. This family of solutions is defined for 5/4,v0,2. It
corresponds to the family ofself-similarsolutions forF(R,t)
obtained in Ref.@6#.

For n51 one obtains

F05CQx2~12x!a~x2x2!g22g1~x12x!2g12g2. ~10!

Here

a5
5v026

322v0
, g15

1227v0

624v0
, g25

3v0

~624v0!s
,

~11!

x65(216s)/2, s5@(v013)/(v021)#1/2, and 0<x<1.
This family is defined for 6/5,v0,3/2.

For anyn, we will need to know the behavior ofF0(x)
andF1(x) in the close vicinity ofx51. A simple analysis of
Eq. ~7! yields F05H0(z)za, wherez512x, H0(z) is an
analytic function on the interval@0,1#, H0(0)Þ0, and

a5
~n14!v02n25

n122~n11!v0
. ~12!

The solution for F0(x) exists if 0,a,`, that is, (n
15)/(n14),v0,(n12)/(n11). This interval of permit-
ted values ofv0 is non-empty for anyn>21. @The case of
n521 is the simplest:H0(z)5const.]

Now we go to the first order in Eq.~5!:

@v0~x2n2x!1x2x2n21#~dF1 /dx!

1@q2~n11!x2n222nv0x2n2124~v021!#F1

5v1@~x2x2n!~dF0 /dx!1~41nx2n21!F0#. ~13!

For a givenv1 , this linear equation can be solved in quadr
tures@12#. We will need only the leading asymptotics of th
solution in the close vicinity ofx51, so we write down the
solution as

F15zax1~z!1zbx2~z!, ~14!

where b5a2q@n122(n11)v0#21, x1 and x2 are ana-
lytic functions on the interval@0,1#, andx1,2(0)Þ0. The so-
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lution exists if Reb>0, which implies Req,(n14)v02n
25. One can checka posteriori that this inequality holds.

Equation~14! will be used later. At this stage we notic
that the still undetermined ‘‘eigenvalue’’q must be selected
by the initial condition. To make this selection possible,
should exploit an~exact! invariance property of Eq.~1!. Con-
sider the initial value problemdR/dt5V(R,t), R(0)5R0
that describes the characteristics of Eq.~1!. If the solution of
this problem,R(t;R0), is known, the solution of Eq.~1! can
be written in the form

F~R,t !5F0„R0~R,t !…]R0~R,t !/]R, ~15!

where R0(R,t) is the function inverse toR(t,R0) with re-
spect to the argumentR0 . R(t,R0) is an analytic and mono
tonic function of R0 . Therefore, the inverse functio
R0(R,t) is also an analytic function ofR and soF(R,t)
preserves its analytic form along the characteristicsR
5R(t;R0), including the ‘‘edge’’ characteristicsRm(t).

We assume a power-law behavior ofF(R,t50) in the
close vicinity ofR5Rm(0). More precisely, we assume tha

F0~j!5jl1g1~j!1jl2g2~j!, ~16!

wherej5Rm(0)2R.0. Herel1 and l2.l1 are arbitrary
positive numbers such thatl22l1Þ1,2, . . . andg1(j) and
g2(j) are analytic atj50 such thatg1,2(0)Þ0. In view of
the analyticity property mentioned above, Eq.~15! can be
rewritten as

F~R,t !5~j8!l1h1~j8,t !1~j8!l2h2~j8,t !, ~17!

where j85Rm(t)2R.0, while h1(j8,t) and h2(j8,t) are
analytic functions ofj8 at j850 andh1,2(0,t)Þ0.

Under the transformation~3! and ~4! the variablesR and
F are multiplied by some quantities independent ofR.
Therefore, we can rewrite Eqs.~16! and ~17! in the new
variablesx andt as follows. The initial DF is now

G0~x!5z1
lg18~z!1zl2g28~z!, z.0, ~18!

whereg18(z) andg28(z) are analytic atz50, g1,28 (0)Þ0 and
we recall thatz512x. Correspondingly, the time-depende
DF G(x,t) can be written as

G~x,t!5zl1h18~z,t!1zl2h28~z,t!, z.0, ~19!

whereh18(z,t) andh28(z,t) are analytic functions ofz in z
50 andh1,28 (0,t)Þ0.

The exponentsl1 and l2 , prescribed by the initial con
ditions, remain invariant. Hence the long-time asymptotics
Eq. ~19! should coincide with that given by Eqs.~6! and
~14!. A direct comparison yieldsa5l1 andb5l2 . The first
equality is nothing but a~weak! selection rule for the self-
similar solution and the selected value ofv0 is

v05
~n12!l11n15

~n11!l11n14
. ~20!

The second equality determinesq:

2q5
3~l22l1!

~n11!l11n14
. ~21!
f

One can see that2q is real and positive, which means st
bility.

Returning to the ‘‘physical’’ variablesR and t is easy.
Indeed, evaluatingRm(t) for the self-similar solution, we
obtain Rm(t)5@(n12)(v021)t#1/(n12). Then, using Eq.
~3!, we see thateqt5t2G, a power-law decay in the physica
time. Here

G5
3~l22l1!

~n12!~l111!
.0.

If we limit ourselves to an important particular case of
single ‘‘nontrivial’’ exponent in the initial DF, G0(x)
5zlg(z) @where g(z) is analytic and g(0)Þ0], then
G(x,t)5zlh(z,t), whereh(z,t) is an analytic function of
z andh(0,t)Þ0. Now, using Eqs.~6! and ~14!, we obtain

2q5
3

~n11!l1n14
, ~22!

FIG. 1. Convergence of an initially localized DF withl51
towards the selected self-similar DF~8! with v057/5 ~solid line!.
Numerical solutions are shown by dotted lines at time mome
t520 (a), 100 (b), 500 (c), and 1000. The inset shows the conve
gence ofv(t) towardsv057/5.

FIG. 2. Convergence exponents predicted analytically~line! and
found numerically~squares! for different l.
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unless the linear term in the Taylor series ofg(z) at z50
vanishes@13#. This yields the power exponent

G5
3

~n12!~l11!
. ~23!

In the limit of l→`, we obtainG→0. Clearly, it corre-
sponds to the logarithmically slow decay obtained for
limiting solution @1,2#. Therefore, both the self-similar DF
and the power-law decay rate of a small perturbation aro
it are uniquely determined by the asymptotics of the init
DF in the close vicinity of the maximum domain sizeR
5Rm(0).

We verified the theory~in the casesn50 and 1! by per-
forming extensive numerical simulations with Eq.~1! and an
explicit equation forRc that follows from Eqs.~1! and ~2!.
As the dynamics is extremely sensitive to small change
the vicinity of R5Rm(t), we needed an algorithm that pre
served the compactness of the DF and kept a high accu
near the edge pointR5Rm(t). A simple and efficient La-
grangian algorithm was developed@14# that satisfied these
requirements. Typical simulation results for the interfac
controlled OR,n50, are presented in Figs. 1 and 2. Figure
ci.

it
n-
p-
th
of
e

d
l

in

cy

-

shows convergence of an initially localized DF,F(R,0)
5R(52R)l with l51, towards the selected self-similar D
~8!, for which Eq. ~20! predictsv057/5. The inset shows
convergence ofv(t) towardsv057/5. The convergence ex
ponentGexp50.76 found numerically agrees very well wit
our theoretical predictionG th50.75. Figure 2 shows the con
vergence exponentsGexp found numerically for differentl.
Good agreement with the theoretical curveG th53/@2(l
11)# is seen. We also observed good agreement betwee
theory and simulations in the case of the diffusion-control
OR, n51.

We have demonstrated in this work that only weak sel
tion is possible in the classical model of OR. To get astrong
selection rule, one obviously must go beyond the class
model. One way of extending the classical model is an
count of fluctuations. This and related issues are discusse
another paper@15#. To the authors knowledge, it was Dav
A. Kessler who coined the terms ‘‘weak’’ and ‘‘strong’’ se
lection.
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